Strategies for
 Finding Area

Here are two strategies you can use to find the area of a rectangle.

Divide the rectangle into unit squares. Count the squares and partial squares.

6 whole squares plus 2 partial squares that are each $\frac{1}{2}$ square makes 7 squares in all.

Area $=7$ square units

Think about using copies of a row or column to fill up the rectangle.

There are $2 \frac{1}{4}$ squares in each row and 3 rows. $2 \frac{1}{4}+2 \frac{1}{4}+2 \frac{1}{4}=6 \frac{3}{4}$ squares in all.

Area $=6 \frac{3}{4}$ square units

Find the area of each rectangle.

Area $=$ \qquad square units

Area $=$ \qquad square units

Practice

Solve.
(3) $14-(9+2)=$ \qquad
(4) $(14-9)+2=$ \qquad
(5) $8+(6 /$
2) $-1=$ \qquad
(6) $(8+6) / 2-1=$ \qquad
of Rectangles

Find the area of the rectangles below. Write a number sentence for each problem and explain how you found the area.
(1)

Area $=$ \qquad
Number sentence: \qquad
Explanation:
(2)

Area: \qquad
Number sentence: \qquad
Explanation:

Practice

Solve.
(3) 36 inches $=$ \qquad feet
(4) inches $=5$ feet
(5) 18 inches $=$ \qquad feet
(6) $\frac{1}{2}$ foot $=$ \qquad inches

How Many Fields?

A farmer has one square mile of land.
(1) If he divides his land into square fields that are $\frac{1}{2}$ mile long and $\frac{1}{2}$ mile wide, how many fields will he have?
\qquad fields
(2) If he divides his land into square fields that are $\frac{1}{3}$ mile long and $\frac{1}{3}$ mile wide, how many fields will he have?
\qquad fields
(3) If he divides his land into square fields that are $\frac{1}{4}$ mile long and $\frac{1}{4}$ mile wide, how many fields will he have?
\qquad fields
(4) a. Suppose the farmer buys another $\frac{1}{2}$ square mile of land and divides all his land into square fields $\frac{1}{4}$ mile long and $\frac{1}{4}$ mile wide. How many fields will he have?
\qquad fields

b. What is the total area of his land in square miles?
\qquad square miles

Practice

(5)
a. \qquad $\min =1 \mathrm{hr}$
b. $180 \mathrm{~min}=$ \qquad hr
(6)
a. $1,000 \mathrm{~g}=$ \qquad kg
b. $g=4 \mathrm{~kg}$

Comparing Volumes of Everyday Objects

Home Link 1-5

Find these (or similar) items in your house:
a cereal bowl
a drinking glass
a coffee mug

SRB
(1) Which item has the greatest volume?
(2) Which item has the smallest volume?
(3) Explain your answers to Problems 1 and 2.

Practice

Find the area of each rectangle.
(4)

Area $=$ \qquad in. ${ }^{2}$

Volume Measurement

Volume is the measure of the amount of space a 3-dimensional object takes up. When we talk about the volume of a container (for example, a vase, a can, a glass, a bowl, a bucket, a box), we are talking about the amount the container can hold.

Only 3-dimensional objects take up space and have volume. Two-dimensional shapes have other attributes that we can measure, such as length and area. But 2-dimensional shapes do not have volume.
(1) Circle each item below that has volume.
a wiggly line drawn on paper
a bar of soap
a circle
a baseball
an empty crayon box
a drawing of a tree
a blue rectangle
a bucket
a swimming pool
a drawing of a flower pot
a cereal box
the kitchen sink
(2) Choose one of the items you circled. Describe one way you could measure the volume of that item. Be sure to tell what unit you would use and why.
\qquad
\qquad
\qquad

Practice

Solve.
(3) $(30+40) * 5=$ \qquad
(4) $30+(40 * 5)=$ \qquad
(5) $(694-95)+(2+3)=$ \qquad
(6) $-15-(12+6-3)$

More Cube-Stacking Problems

Home Link $1-7$

The cubes in each rectangular prism are the same size. Each prism has at least one stack of cubes that goes up to the top. Find the total number of cubes needed to completely fill each prism. Then find the volume of each prism.
(1)

Prism A

Cubes needed to fill Prism A:
\qquad cubes

Volume of Prism A: \qquad units ${ }^{3}$
(3)

Prism C
(2)

Prism B

Cubes needed to fill Prism B:
\qquad cubes

Volume of Prism B: \qquad cubic units

Practice

Solve.
(4) $(14+30) * 2=$ \qquad
(5) $14+(30 * 2)=$ \qquad
(6) $工=(68-58) *(8+8+8)$
(7)
$(15-10)+(4 * 5)=$ \qquad $+5$

Cubes needed to fill Prism C:
\qquad cubes

Volume of Prism C: \qquad cubic units

Packing Boxes

A fifth-grade class raised money to buy math tools to send to other schools. Tom, Ed, and Anu are in charge of packing unit cubes. They want each student to receive a box with at least 100 unit cubes.

Tom, Ed, and Anu started packing the boxes. They wonder if each box is big enough to hold at least 100 cubes.

(1) a. How many cubes can Tom's box hold?
\qquad cubes
b. Is Tom's box big enough?

(3) a. How many cubes can Anu's box hold?
\qquad cubes
b. Is Anu's box big enough?

Ed's Box

(2) a. How many cubes can Ed's box hold?
\qquad cubes
b. Is Ed's box big enough? \qquad

Practice

Insert parentheses to make each equation true.
(4) $14+2=6+2 * 3+2$
(5) $16-5 * 4=22 * 2$
(6) $16 \times 10=100+220 \div 2$
(7) $3 * 56-4=128+28$

Today you learned two different formulas to find the volume of a rectangular prism:
SRB $V=I \times w \times h$ (volume $=$ length \times width \times height)
$V=B \times h$ (volume $=$ area of the base \times height)
Use the formulas to find the volume of each prism. Be sure to include a unit. Cross out the prism in each set that has a volume different than the other prisms.

(1) Set 1

2 units

Volume $=$ \qquad

$$
\text { Volume }=
$$

\qquad

(2) Set 2

Volume $=$ \qquad

$$
\text { Volume }=
$$

\qquad
Volume $=$ \qquad

Practice

Find the area of each rectangle.

Area $=$

$$
\text { Area }=
$$

Comparing Volume Units

Circle the volume unit that is larger.
(1) cubic centimeters
cubic meters
(2) cubic millimeters cubic inches
(3) cubic miles cubic decimeters
(4) cubic meters cubic feet
(5) Explain how you knew which volume unit was larger in Problems 1-4.
\qquad
\qquad
\qquad
Find an object around your home that you might measure with the given unit.
(6) cubic inches
(7) cubic meters
(8) cubic feet

Practice

Find the volume of a rectangular prism with the given dimensions.
(9) length $=8$ meters
(10) area of the base $=25$ inches 2
height $=5$ meters
height $=4$ inches
width $=2$ meters \qquad inches ${ }^{3}$
\qquad meters ${ }^{3}$

Finding Volumes

Find the volume of each figure below. Then name at least one real-world object that the figure could model. For example, the figure in Problem 1 could model a flashlight.

SRB 234
(1)

Volume $=$ \qquad cubic units
(2)

Volume $=$ \qquad cubic units
(3)

This figure could model...
\qquad
\qquad
\qquad

Volume $=$ \qquad cubic units

This figure could model...
a flashlight
\qquad
\qquad

Playing Prism Pile-Up

Three rounds of Prism Pile-Up are shown below. For each round:

- Find the volume of each figure.
- Circle the winning card (the card with the figure that has a greater volume).
- Write one or more number sentences for the winning card.

Round 1

$V=$ \qquad cm^{3}

Round 2

$V=$ \qquad cm^{3}

Round 3

Number sentence(s):
\qquad
\qquad
$V=$ \qquad cm^{3}

\qquad

Number sentence(s):
\qquad
\qquad

Number sentence(s):
\qquad
\qquad
 1
$V=$ \qquad cm^{3}

