## Mixed-Number Multiplication

For Problems 1 and 2:

- Use the rectangle to make an area model. Label the sides. The model in Problem 1 has been started for you.
- Find and list the partial products. Label the partial products in the area model.
- Add the partial products to find your answer. You may need to rename fractions with a common denominator.
(1) $4 \frac{3}{8} * 5=$ ?

Partial products:
$4 \frac{3}{8} * 5=$ $\qquad$
(2) $2 \frac{3}{5} * 3 \frac{1}{3}=$ ?

Partial products:


Area model:
$\square$
(3) Write a number story that matches Problem 1.
$\qquad$
$\qquad$
$\qquad$

## Practice

Solve.
(4) $\frac{2}{3}+\frac{5}{8}=$ $\qquad$ (5) $\frac{1}{16}+\frac{3}{4}=$
$\qquad$

## More Mixed-Number Multiplication

Solve Problems 1 and 2 using the method in the example below. Show your work.
Example: $2 \frac{1}{5} * 1 \frac{3}{4}$

- Rename any mixed or whole numbers as fractions: $2 \frac{1}{5}=\frac{11}{5} ; 1 \frac{3}{4}=\frac{7}{4}$
- Rewrite the problem using the fractions as factors: $\frac{11}{5} * \frac{7}{4}$
- Multiply using a fraction multiplication algorithm: $\frac{(11 * 7)}{(5 * 4)}=\frac{77}{20}$, or $3 \frac{17}{20}$
(1) $1 \frac{3}{5} * 6=$ ?
(2) $4 \frac{1}{2} * 1 \frac{5}{6}=$ ?
$1 \frac{3}{5} * 6=$ $\qquad$

$$
4 \frac{1}{2} * 1 \frac{5}{6}=
$$

$\qquad$
Solve Problems 3 and 4 using the method of your choice.
(3) What is the area of a table that is $1 \frac{1}{4} \mathrm{~m}$ long and $2 \frac{1}{3} \mathrm{~m}$ wide? Write a number model with a letter for the unknown. Then solve. Show your work.

Number model: $\qquad$

Answer: The area of the table is $\qquad$ $\mathrm{m}^{2}$.
(4) Write a number story that can be solved by multiplying $2 \frac{3}{4}$ and $\frac{1}{2}$. Then solve the problem. Show your work on the back of this page.

Number story: $\qquad$
$\qquad$
$\qquad$

Answer: $\qquad$

## Practice

(5) $\frac{11}{12}-\frac{3}{4}=$ $\qquad$ (6) $\frac{7}{8}-\frac{1}{6}=$
$\qquad$

## Solving More Area Problems

Solve. Show your work. Write a number model to summarize each solution.
(1) The cover of Martina's book measures $7 \frac{1}{4}$ inches by 9 inches. What is the area of the book cover?

Area: $\qquad$ Number model: $\qquad$
(2) The hallway floor in Ryan's school is covered with square tiles that are $\frac{1}{2}$ foot by $\frac{1}{2}$ foot. Ryan counted and found that the hallway is 15 tiles wide and 60 tiles long.
a. How many tiles cover the hallway floor? $\qquad$
b. What is the area of the hallway floor?

Area: $\qquad$ Number model: $\qquad$
(3) An artist made a stained-glass window that is $3 \frac{1}{2}$ feet by $2 \frac{3}{4}$ feet.
a. What is the area of the window?

Area: $\qquad$ Number model: $\qquad$
b. The artist's design used squares of colored glass that measure $\frac{1}{4}$ foot by $\frac{1}{4}$ foot. How many colored squares did the artist use?

Answer: $\qquad$ Number model: $\qquad$

## Practice

(4) $3 \frac{1}{8}+4 \frac{2}{3}=$ $\qquad$ (5) $2 \frac{1}{6}+1 \frac{5}{18}=$
$\qquad$

## Solving Fraction Division Problems

## Using Common Denominators to Divide

One way to divide fractions is to use common denominators. This method can be used to divide whole numbers by fractions and fractions by whole numbers.

## Example:

Step 1 Rename the dividend and divisor as fractions with a common denominator.

Step 2 Divide the numerators.

$$
1 \div 12=\frac{1}{12}
$$

Solve Problems 1-4. Show your work. Use multiplication to check your answer.
(1) $5 \div \frac{1}{3}=$ ?
(2) $4 \div \frac{1}{8}=$ ?

Answer: $\qquad$

Check: $\qquad$
(3) $\frac{1}{6} \div 4=$ ?
(4) $\frac{1}{5} \div 6=$ ?

## Practice

(6) $4 \frac{1}{2}-1 \frac{3}{4}=$ $\qquad$ (7) $2 \frac{7}{8}-1 \frac{1}{3}=$
$\qquad$

## Using a Hierarchy

A pentagon is a shape with 5 sides. The shape below is a pentagon.


Home Link 7-5
NAME

An equilateral pentagon is a pentagon with 5 sides that are all the same length. The shape below is an equilateral pentagon.


Consider the pentagon hierarchy below. Use it to answer the questions.
Pentagons
(1) Answer Parts a-c to classify this shape
 on the hierarchy.

a. Can this shape go in the top category, Pentagons? How do you know?

## Equilateral pentagons


b. Can this shape go in the first subcategory, Equilateral pentagons? How do you know?

## Equilateral pentagons

## with at least one

 right anglec. Can this shape go into the second subcategory, Equilateral pentagons with at least one right angle? How do you know?
$\qquad$
$\qquad$
(2) Describe how you would classify the shape below on the hierarchy. Start at the top and describe how you know if the shape fits in each category and subcategory.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$


## The Quadrilateral Hierarchy

## Home Link 7-6

The quadrilateral hierarchy you used in class is below. Use it to answer the questions.

(1) Fill in the blanks.
a. All trapezoids are quadrilaterals, but not all quadrilaterals are trapezoids
b. All $\qquad$ are
$\qquad$ but
not all $\qquad$ are $\qquad$ .
c. All $\qquad$ are
$\qquad$ but
not all $\qquad$ are $\qquad$ _.
(2) a. All parallelograms have two pairs of parallel sides. Does this mean that all rectangles have two pairs of parallel sides? Explain how you can tell by looking at the hierarchy.
$\qquad$
$\qquad$
b. All trapezoids have at least one pair of parallel sides. Which other shapes have at least one pair of parallel sides? Explain how you can tell by looking at the hierarchy.
$\qquad$
$\qquad$

## Practice

(3) $\frac{1}{4} \div 8=$ $\qquad$ (4) $\frac{1}{10} \div 3=$ $\qquad$
(5) $\frac{1}{6} \div 2=$ $\qquad$ (6) $\frac{1}{5} \div 12=$ $\qquad$

## Property Pandemonium

(1) Imagine that you are playing Property Pandemonium. You already chose all of your cards and filled in the Property and Quadrilateral columns. Complete the Drawing, Additional Names, and Points columns for each round. Then find your total score.

| Round | Property | Quadrilateral | Drawing | Additional Names | Points |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1}$ | 2 pairs of <br> parallel <br> sides | rhombus |  |  |  |
| $\mathbf{2}$ | 2 pairs of <br> adjacent <br> sides <br> equal in <br> length | parallelogram |  |  |  |
| $\mathbf{3}$ | 4 right <br> angles | kite |  |  |  |

## Practice

Divide.
(2) $9 \div \frac{1}{3}=$ $\qquad$
(3) $4 \div \frac{1}{5}=$ $\qquad$
(4) $2 \div \frac{1}{10}=$ $\qquad$ (5) $12 \div \frac{1}{4}=$ $\qquad$



(1) Draw the 12 shapes above in the correct categories on the hierarchy.

## Polygons



At least 1 right angle


Exactly 4 right angles


At least 1 obtuse angle


All obtuse angles
(2) Explain how you decided where to place the hexagon.

## Practice

Solve.
(3) $6.8 * 10^{3}=$ $\qquad$ (4) $12.7 \div 10^{4}=$ $\qquad$
(5) $0.4 *$ $\qquad$ $=4,000$
(6) $64.3 \div$ $\qquad$ $=0.643$

## Plotting and Interpreting Line-Plot Data

Marisela and her class are finding their finger-stretch measurements. The finger stretch is measured from the tip of the pinkie to the tip of the index finger with an outstretched hand. Below are the measurements for Marisela and her classmates to the nearest $\frac{1}{2}$ inch.

| 4 | $6 \frac{1}{2}$ | 6 |
| :--- | :--- | :--- |
| $5 \frac{1}{2}$ | 5 | 5 |
| $4 \frac{1}{2}$ | $5 \frac{1}{2}$ | $4 \frac{1}{2}$ |
| $5 \frac{1}{2}$ | $5 \frac{1}{2}$ | 6 |
| $5 \frac{1}{2}$ | 5 | 5 |
| $6 \frac{1}{2}$ | $5 \frac{1}{2}$ | 6 |
| 6 | 7 | $6 \frac{1}{2}$ |
| $5 \frac{1}{2}$ |  |  |

(1) Plot the data on the line plot.


Finger-Stretch Length (in.)
(2) Marisela wants to find the total length of all the $6 \frac{1}{2}$-inch finger stretches. Write a number model using addition to help her find the total, then solve.

Number model: $\qquad$
Answer: $\qquad$ inches
(3) Now Marisela wants to use multiplication to find the total length of all the $5 \frac{1}{2}$-inch finger stretches. Write a number model. Then solve.

Number model: $\qquad$
Answer: $\qquad$ inches
(4) Find the total length of all the finger stretches in Marisela's class.

Answer: $\qquad$ inches

## Practice

(5) $4 \frac{1}{5} * \frac{1}{3}=$ $\qquad$ (6) $2 \frac{5}{6} * 7 \frac{1}{4}=$
$\qquad$

## Identifying Patterns

(1) a. Each column in the table below has a rule at the top. Use the rules to fill in the columns.

| in (x) <br> Rule: +2 | out ( $y$ ) <br> Rule: -2 |
| :---: | :---: |
| $O$ | $/ O$ |
|  |  |
|  |  |
|  |  |

b. What rule relates the numbers in the in column to the numbers in the out column? Hint: What happens when you add the numbers in each row?
$\qquad$
$\qquad$
$\qquad$
c. Write the numbers from the table as ordered pairs. Graph the ordered pairs on the grid. Draw a line to connect the points.
Ordered pairs:
$(0,10)$

(2) How does your graph in Problem 1c show the +2 rule from the in column?

## Practice

The digits in each product or quotient are given. Use an estimate to place the decimal point. Write a number sentence to show how you estimated.
(3) $42.96 \div 1.2=358$
(4) $19.2 * 8.8=16896$

Number sentence: $\qquad$ Number sentence: $\qquad$

## Working with Rules, Tables, and Graphs

Use the rule to complete the table. Write ordered pairs to represent the data. Then graph the ordered pairs and answer the questions.
I
(1) Cherry tomatoes cost $\$ 2.50$ per pound.

Rule: Cost $=\$ 2.50 *$ weight in pounds
a.

| Weight (pounds) <br> $(x)$ | Cost (dollars) <br> $(y)$ |
| :---: | :---: |
| 1 |  |
| 3 | 15.00 |
| 10 |  |

b. Ordered pairs:
c.

$\qquad$
d. Plot a point to show the cost of 8 pounds of cherry tomatoes. What is the cost?
$\qquad$
e. Julius has $\$ 12.00$. Does he have enough money to buy 5 pounds of cherry tomatoes? Explain.
$\qquad$
$\qquad$
f. Would you use the graph, the table, or the rule to find out how much 50 pounds of cherry tomatoes would cost? Explain.
$\qquad$
$\qquad$

## Practice

Multiply. Show your work on the back of this page.
(2) $29.5 * 62.3=$ $\qquad$ (3) $4.1 * 250.8=$ $\qquad$

## Interpreting Tables and Graphs

Ami runs 6 yards per second. Derek runs 5 yards per second. Ami challenged Derek to an 80-yard race. She told him he could have a 12-yard head start.

- Complete the tables to show the distances Ami and Derek are from the starting line during the first 5 seconds of the race.
- Write 3 ordered pairs each for Ami and Derek.
- Graph the ordered pairs you wrote and connect them with a line. Extend each line to the 80-yard mark to find out who wins. Label each line.

| Ami |  | Derek |  |
| :---: | :---: | :---: | :---: |
| Time in Seconds ( $x$ ) | Distance in Yards (y) | Time in Seconds ( $x$ ) | Distance in Yards (y) |
| 0 | 0 | 0 | 12 |
| 1 | 6 | 1 | 17 |
| 2 |  | 2 |  |
| 3 |  | 3 | 27 |
| 4 | 24 | 4 |  |
| 5 |  | 5 |  |

Ami $\qquad$
Derek $\qquad$
$\qquad$
$\qquad$

(1) Who wins the race? How do you know?

## Practice

Write an equivalent problem with a whole-number divisor. Then solve.
(2) $68 \div 0.5=$ $\qquad$

$$
680 \div 5=136
$$

(3) $7.92 \div 0.22=$ $\qquad$

## Analyzing Patterns and Relationships

(1) Use the given rules to complete each column of the table.
(2) Find a rule that relates the in numbers to the corresponding out numbers.

Rule: $\qquad$
(3) Write the numbers in the table as ordered pairs.
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
$\qquad$
(4) Graph the ordered pairs on the grid.

| in (x) <br> Rule: +1 | out (y) <br> Rule: +6 |
| :---: | :---: |
| 0 | 5 |
| 1 | 11 |
|  |  |
|  |  |


(5) Use the graph to answer the questions below. Use the formula to check your answers.
a. When the in number is 8 , what is the out number? $\qquad$
b. When $y$ is 64 , about how much is $x$ ? About $\qquad$

## Practice

Solve. Show your work on the back of this page.
(6) $3 \frac{1}{5} * 2 \frac{2}{3}=$ $\qquad$ (7) $8 \frac{1}{2} * 12=$ $\qquad$ (8) $9 * 5 \frac{1}{7}=$
$\qquad$

